Multi-graph-view learning for complicated object classification

Publication Type:
Conference Proceeding
Citation:
IJCAI International Joint Conference on Artificial Intelligence, 2015, 2015-January pp. 3953 - 3959
Issue Date:
2015-01-01
Full metadata record
Files in This Item:
Filename Description Size
Jia-Wu-IJCAI-2015.555 (1).pdfAccepted Manuscript1.22 MB
Adobe PDF
In this paper, we propose to represent and classify complicated objects. In order to represent the objects, we propose a multi-graph-view model which uses graphs constructed from multiple graph-views to represent an object. In addition, a bag based multi-graph model is further used to relax labeling by only requiring one label for a bag of graphs, which represent one object. In order to learn classification models, we propose a multi-graph-view bag learning algorithm (MGVBL), which aims to explore subgraph features from multiple graphviews for learning. By enabling a joint regularization across multiple graph-views, and enforcing labeling constraints at the bag and graph levels, MGVBL is able to discover most effective subgraph features across all graph-views for learning. Experiments on real-world learning tasks demonstrate the performance of MGVBL for complicated object classification.
Please use this identifier to cite or link to this item: