Performance analysis of reverse osmosis, membrane distillation, and pressure-retarded osmosis hybrid processes

Publication Type:
Journal Article
Desalination, 2016, 380 pp. 85 - 92
Issue Date:
Full metadata record
© 2015 Elsevier B.V. A performance analysis of a tri-combined process that consists of reverse osmosis (RO), membrane distillation (MD), and pressure-retarded osmosis (PRO) was conducted by using numerical approaches in order to evaluate its feasibility. In the hybrid process, the RO brine is partially used as the MD feed solution, and the concentrated MD brine is then mixed with the rest of the RO brine to be considered as the PRO draw solution. Here, the brine division ratio, incoming flow rate of RO, dimensions of the MD and PRO processes, and the supply cost of the MD heat source were considered as influential parameters. Previously validated process models were employed and the specific energy consumption (SEC) was calculated to examine the performance of the RO-MD-PRO hybrid process. The simulation results confirmed that the RO-MD-PRO hybrid process could outperform stand-alone RO in terms of reducing the SEC and the environmental footprint by dilution of the RO brine in locations where free or low-cost thermal energy can be exploited. Despite the need for further investigations and pilot-tests to determine its commercial practicability, this study provides insights into future directions for water and energy nexus processes for energy efficient desalination.
Please use this identifier to cite or link to this item: