Sediment resuspension and deposition on seagrass leaves impedes internal plant aeration and promotes phytotoxic H<inf>2</inf>S intrusion

Publication Type:
Journal Article
Citation:
Frontiers in Plant Science, 2017, 8
Issue Date:
2017-05-09
Full metadata record
© 2017 Brodersen, Hammer, Schrameyer, Floytrup, Rasheed, Ralph, Kühl and Pedersen. Anthropogenic activities leading to sediment re-suspension can have adverse effects on adjacent seagrass meadows, owing to reduced light availability and the settling of suspended particles onto seagrass leaves potentially impeding gas exchange with the surrounding water. We used microsensors to determine O2 fluxes and diffusive boundary layer (DBL) thickness on leaves of the seagrass Zostera muelleri with and without fine sediment particles, and combined these laboratory measurements with in situ microsensor measurements of tissue O2 and H2 S concentrations. Net photosynthesis rates in leaves with fine sediment particles were down to ∼20% of controls without particles, and the compensation photon irradiance increased from a span of 20–53 to 109–145 µmol photons m−2 s−1. An ∼2.5-fold thicker DBL around leaves with fine sediment particles impeded O2 influx into the leaves during darkness. In situ leaf meristematic O2 concentrations of plants exposed to fine sediment particles were lower than in control plants and exhibited long time periods of complete meristematic anoxia during night-time. Insufficient internal aeration resulted in H2 S intrusion into the leaf meristematic tissues when exposed to sediment resuspension even at relatively high night-time water-column O2 concentrations. Fine sediment particles that settle on seagrass leaves thus negatively affect internal tissue aeration and thereby the plants’ resilience against H2 S intrusion.
Please use this identifier to cite or link to this item: