Robust topology optimization considering load uncertainty based on a semi-analytical method

Publication Type:
Journal Article
Citation:
International Journal of Advanced Manufacturing Technology, 2018, 94 (9-12), pp. 3537 - 3551
Issue Date:
2018-02-01
Full metadata record
Files in This Item:
Filename Description Size
10.1007%2Fs00170-017-1002-x.pdfPublished Version2.02 MB
Adobe PDF
© 2017, Springer-Verlag London Ltd. Uncertainty is omnipresent in engineering design and manufacturing. This paper dedicates to present a robust topology optimization (RTO) methodology for structural compliance minimization problems considering load uncertainty, which includes magnitude and direction uncertainty subjected to Gaussian distribution. To this end, comprehensible semi-analytical formulations are derived to fleetly calculate the statistical data of structural compliance, which is critical to the probability-based RTO problem. In order to avoid the influence of numerical units on evaluating the robust results, this paper considers a generic coefficient of variation (GCV) as robust index which contains both the expected compliance and standard variance. In addition, the accuracy and efficiency of semi-analytical formulas are validated by the Monte Carlo (MC) simulation; comparison results provide higher calculation efficiency over the MC-based optimization algorithms. Four numerical examples are provided via density-based approach to demonstrate the effectiveness and robustness of the proposed method.
Please use this identifier to cite or link to this item: