Probiotics for the prevention of Clostridium-difficileassociated diarrhea in adults and children

Cochrane Collaboration
Publication Type:
Journal Article
Cochrane Database of Systematic Reviews, 2017, pp. 1 - 211
Issue Date:
Full metadata record
Files in This Item:
Filename Description Size
CD006095.pdfPublished Version1.62 MB
Adobe PDF
Background Antibiotics can disturb gastrointestinal microbiota which may lead to reduced resistance to pathogens such as Clostridium difficile (C. difficile). Probiotics are live microbial preparations that, when administered in adequate amounts, may confer a health benefit to the host, and are a potential C. difficile prevention strategy. Recent clinical practice guidelines do not recommend probiotic prophylaxis, even though probiotics have the highest quality evidence among cited prophylactic therapies. Objectives To assess the efficacy and safety of probiotics for preventing C.difficile-associated diarrhea (CDAD) in adults and children. Search methods We searched PubMed, EMBASE, CENTRAL, and the Cochrane IBD Group Specialized Register from inception to 21 March 2017. Additionally, we conducted an extensive grey literature search. Selection criteria Randomized controlled (placebo, alternative prophylaxis, or no treatment control) trials investigating probiotics (any strain, any dose) for prevention of CDAD, or C. difficile infection were considered for inclusion. Data collection and analysis Two authors (independently and in duplicate) extracted data and assessed risk of bias. The primary outcome was the incidence of CDAD. Secondary outcomes included detection of C. difficile infection in stool, adverse events, antibiotic-associated diarrhea (AAD) and length of hospital stay. Dichotomous outcomes (e.g. incidence of CDAD) were pooled using a random-effects model to calculate the risk ratio (RR) and corresponding 95% confidence interval (95% CI). We calculated the number needed to treat for an additional beneficial outcome (NNTB) where appropriate. Continuous outcomes (e.g. length of hospital stay) were pooled using a random-effects model to calculate the mean difference and corresponding 95% CI. Sensitivity analyses were conducted to explore the impact of missing data on efficacy and safety outcomes. For the sensitivity analyses, we assumed that the event rate for those participants in the control group who had missing data was the same as the event rate for those participants in the control group who were successfully followed. For the probiotic group, we calculated effects using the following assumed ratios of event rates in those with missing data in comparison to those successfully followed: 1.5:1, 2:1, 3:1, and 5:1. To explore possible explanations for heterogeneity, a priori subgroup analyses were conducted on probiotic species, dose, adult versus pediatric population, and risk of bias as well as a post hoc subgroup analysis on baseline risk of CDAD (low 0% to 2%; moderate 3% to 5%; high > 5%). The overall quality of the evidence supporting each outcome was independently assessed using the GRADE criteria. Main results Thirty-nine studies (9955 participants) met the eligibility requirements for our review. Overall, 27 studies were rated as either high or unclear risk of bias. A complete case analysis (i.e. participants who completed the study) among trials investigating CDAD (31 trials, 8672 participants) suggests that probiotics reduce the risk of CDAD by 60%. The incidence of CDAD was 1.5% (70/4525) in the probiotic group compared to 4.0% (164/4147) in the placebo or no treatment control group (RR 0.40, 95% CI 0.30 to 0.52; GRADE = moderate). Twenty-two of 31 trials had missing CDAD data ranging from 2% to 45%. Our complete case CDAD results proved robust to sensitivity analyses of plausible and worst-plausible assumptions regarding missing outcome data and results were similar whether considering subgroups of trials in adults versus children, inpatients versus outpatients, different probiotic species, lower versus higher doses of probiotics, or studies at high versus low risk of bias. However, in a post hoc analysis, we did observe a subgroup effect with respect to baseline risk of developing CDAD. Trials with a baseline CDAD risk of 0% to 2% and 3% to 5% did not show any difference in risk but trials enrolling participants with a baseline risk of > 5% for developing CDAD demonstrated a large 70% risk reduction (interaction P value = 0.01). Among studies with a baseline risk > 5%, the incidence of CDAD in the probiotic group was 3.1% (43/1370) compared to 11.6% (126/1084) in the control group (13 trials, 2454 participants; RR 0.30, 95% CI 0.21 to 0.42; GRADE = moderate). With respect to detection of C. difficile in the stool pooled complete case results from 15 trials (1214 participants) did not show a reduction in infection rates. C. difficile infection was 15.5% (98/633) in the probiotics group compared to 17.0% (99/ 581) in the placebo or no treatment control group (RR 0.86, 95% CI 0.67 to 1.10; GRADE = moderate). Adverse events were assessed in 32 studies (8305 participants) and our pooled complete case analysis indicates probiotics reduce the risk of adverse events by 17% (RR 0.83, 95% CI 0.71 to 0.97; GRADE = very low). In both treatment and control groups the most common adverse events included abdominal cramping, nausea, fever, soft stools, flatulence, and taste disturbance
Please use this identifier to cite or link to this item: