Static Var Compensator allocation considering transient stability, voltage profile and losses

Publication Type:
Conference Proceeding
Citation:
2017 20th International Conference on Electrical Machines and Systems, ICEMS 2017, 2017
Issue Date:
2017-10-02
Full metadata record
© 2017 IEEE. The purpose of this paper is to determine the optimal location, size and controller parameters of Static Var Compensator (SVC) to simultaneously improve static and dynamic objectives in a power system. Four goals are considered in this paper including transient stability, voltage profile, SVC investment cost and power loss reduction. Along with the SVC allocation for improving the system transient stability, an additional controller is used and adjusted to improve the SVC performance. Also, an estimated annual load profile including three load levels is utilized to accurately find the optimal location and capacity of SVC. By considering three load levels, the cost of power losses in the power system is decreased significantly. The combination of the active power loss cost and SVC investment cost is considered as a single objective to obtain an accurate and practical solution, while the improvement of transient stability and voltage profile of the system are considered as two separate objectives. The problem is therefore formulated as a multi-objective optimization problem, and Multi Objective Particle Swarm Optimization (MOPSO) algorithm is utilized to find the best solutions. The suggested technique is verified on a 10-generator 39-bus New England test system. The results of the nonlinear simulation indicate that the optimal sizing, location and controller parameters setting of SVC can improve significantly both static and dynamic performance of the system.
Please use this identifier to cite or link to this item: