Efficient Active SLAM Based on Submap Joining, Graph Topology and Convex Optimization

Publication Type:
Conference Proceeding
Proceedings - IEEE International Conference on Robotics and Automation, 2018, pp. 5159 - 5166
Issue Date:
Filename Description Size
08460864.pdfPublished version1.41 MB
Adobe PDF
Full metadata record
© 2018 IEEE. The active SLAM problem considered in this paper aims to plan a robot trajectory for simultaneous localization and mapping (SLAM) as well as for an area coverage task with robot pose uncertainty. Based on a model predictive control (MPC) framework, these two problems are solved respectively by different methods. For the uncertainty minimization MPC problem, based on the graphical structure of the 2D feature-based SLAM, a non-convex constrained least-squares problem is presented to approximate the original problem. Then, using variable substitutions, it is further transformed into a convex problem, and then solved by a convex optimization method. For the coverage task considering robot pose uncertainty, it is formulated and solved by the MPC framework and the sequential quadratic programming (SQP) method. In the whole process, considering the computation complexity, we use linear SLAM, which is a submap joining approach, to reduce the time for planning and estimation. Finally, various simulations are presented to validate the effectiveness of the proposed approach.
Please use this identifier to cite or link to this item: