Impact of the growing healthy mhealth program on maternal feeding practices, infant food preferences, and satiety responsiveness: Quasi-experimental study

Publication Type:
Journal Article
Citation:
JMIR mHealth and uHealth, 2018, 6 (4)
Issue Date:
2018-04-01
Metrics:
Full metadata record
© Catherine Georgina Russell, Elizabeth Denney-Wilson, Rachel A Laws, Gavin Abbott, Miaobing Zheng, Sharyn J Lymer, Sarah Taki, Eloise-Kate V Litterbach, Kok-Leong Ong, Karen J Campbell. Background: Infancy is an important life stage for obesity prevention efforts. Parents’ infant feeding practices influence the development of infants’ food preferences and eating behaviors and subsequently diet and weight. Mobile health (mHealth) may provide a feasible medium through which to deliver programs to promote healthy infant feeding as it allows low cost and easy access to tailored content. Objective: The objective of this study was to describe the effects of an mHealth intervention on parental feeding practices, infant food preferences, and infant satiety responsiveness. Methods: A quasi-experimental study was conducted with an mHealth intervention group (Growing Healthy) and a nonrandomized comparison group (“Baby's First Food"). The intervention group received access to a free app with age-appropriate push notifications, a website, and an online forum that provided them with evidence-based advice on infant feeding for healthy growth from birth until 9 months of age. Behavior change techniques were selected using the Behaviour Change Wheel framework. Participants in both groups completed three Web-based surveys, first when their infants were less than 3 months old (baseline, T1), then at 6 months (time 2, T2), and 9 months of age (time 3, T3). Surveys included questions on infant feeding practices and beliefs (Infant Feeding Questionnaire, IFQ), satiety responsiveness (Baby Eating Behaviour Questionnaire), and infant’s food exposure and liking. Multivariate linear regression models, estimated using maximum likelihood with bootstrapped standard errors, were fitted to compare continuous outcomes between the intervention groups, with adjustment for relevant covariates. Multivariate logistic regression adjusting for the same covariates was performed for categorical outcomes. Results: A total of 645 parents (Growing Healthy: n=301, Baby's First Food: n=344) met the eligibility criteria and were included in the study, reducing to a sample size of 546 (Growing Healthy: n=234, Baby's First Food: n=312) at T2 and a sample size of 518 (Growing Healthy: n=225, Baby's First Food: n=293) at T3. There were approximately equal numbers of boy and girl infants, and infants were aged less than 3 months at baseline (Growing Healthy: mean 7.0, SD 3.7 weeks; Baby's First Food: mean 7.9, SD 3.8 weeks), with Growing Healthy infants being slightly younger than Baby's First Food infants (P=.001). All but one (IFQ subscale “concerns about infant overeating or becoming overweight” at T2) of the measured outcomes did not differ between Growing Healthy and Baby's First Food. Conclusions: Although mHealth can be effective in promoting some health behaviors and offers many advantages in health promotion, the results of this study suggest that design and delivery characteristics needed to maximize the impact of mHealth interventions on infant feeding are uncertain. The sensitivity of available measurement tools and differences in baseline characteristics of participants may have also affected the results.
Please use this identifier to cite or link to this item: