Generalized continuous wave synthetic aperture radar for high resolution and wide swath remote sensing

Publication Type:
Journal Article
IEEE Transactions on Geoscience and Remote Sensing, 2018, 56 (12), pp. 7217 - 7229
Issue Date:
Filename Description Size
Sarah.pdfAccepted Manuscript Version6.21 MB
Adobe PDF
Full metadata record
© 2018 IEEE. A generalized continuous wave synthetic aperture radar (GCW-SAR) concept is proposed in this paper. By using full-duplex radio frontend and continuous wave signaling, the GCW-SAR system can overcome a number of limitations inherent within the existing SAR systems and achieve high-resolution and wide-swath remote sensing with low-power signal transmission. Unlike the conventional pulsed SAR and the frequency-modulated continuous-wave SAR, the GCW-SAR reconstructs a radar image by directly correlating the received 1-D raw data after self-interference cancellation with predetermined location-dependent reference signals. A fast imaging algorithm, called the piecewise constant Doppler (PCD) algorithm, is also proposed, which produces the radar image recursively in the azimuth direction without any intermediate step, such as range compression and migration compensation, as required by conventional algorithms. By removing the stop-and-go assumption or slow-time sampling in azimuth, the PCD algorithm not only achieves better imaging quality but also allows for more flexible waveform and system designs. Analyses and simulations show that the GCW-SAR tolerates significant self-interference and works well with a large selection of various system parameters. The work presented in this paper establishes a solid theoretical foundation for next-generation imaging radars.
Please use this identifier to cite or link to this item: