Well-M³N: A Maximum-Margin Approach to Unsupervised Structured Prediction

Publisher:
Institute of Electrical and Electronics Engineers
Publication Type:
Journal Article
Citation:
IEEE Transactions on Emerging Topics in Computational Intelligence, 2019, pp. ? - ? (14)
Issue Date:
2019-06-01
Metrics:
Full metadata record
Files in This Item:
Filename Description Size
wellm3n_resubmission_v2.pdf478.01 kB
Adobe PDF
Unsupervised structured prediction is of fundamental importance for the clustering and classification of unannotated structured data. To date, its most common approach still relies on the use of structural probabilistic models and the expectation-maximization (EM) algorithm. Conversely, structural maximum-margin approaches, despite their extensive success in supervised and semi-supervised classification, have not raised equivalent attention in the unsupervised case. For this reason, in this paper we propose a novel approach that extends the maximum-margin Markov networks (M3N) to an unsupervised training framework. The main contributions of our extension are new formulations for the feature map and loss function of M3N that decouple the labels from the measurements and support multiple ground-truth training. Experiments on two challenging segmentation datasets have achieved competitive accuracy and generalization compared to other unsupervised algorithms such as k-means, EM and unsupervised structural SVM, and comparable performance to a contemporary deep learning-based approach.
Please use this identifier to cite or link to this item: