The use of microfluidic technology for cancer applications and liquid biopsy

Publication Type:
Journal Article
Citation:
Micromachines, 2018, 9 (8)
Issue Date:
2018-08-10
Metrics:
Full metadata record
Files in This Item:
Filename Description Size
micromachines-09-00397.pdfPublished Version2.3 MB
Adobe PDF
© 2018 by the authors. There is growing awareness for the need of early diagnostic tools to aid in point-of-care testing in cancer. Tumor biopsy remains the conventional means in which to sample a tumor and often presents with challenges and associated risks. Therefore, alternative sources of tumor biomarkers is needed. Liquid biopsy has gained attention due to its non-invasive sampling of tumor tissue and ability to serially assess disease via a simple blood draw over the course of treatment. Among the leading technologies developing liquid biopsy solutions, microfluidics has recently come to the fore. Microfluidic platforms offer cellular separation and analysis platforms that allow for high throughout, high sensitivity and specificity, low sample volumes and reagent costs and precise liquid controlling capabilities. These characteristics make microfluidic technology a promising tool in separating and analyzing circulating tumor biomarkers for diagnosis, prognosis and monitoring. In this review, the characteristics of three kinds of circulating tumor markers will be described in the context of cancer, circulating tumor cells (CTCs), exosomes, and circulating tumor DNA (ctDNA). The review will focus on how the introduction of microfluidic technologies has improved the separation and analysis of these circulating tumor markers.
Please use this identifier to cite or link to this item: