Team VALOR’s ESCHER: A novel electromechanical biped for the DARPA robotics challenge

Publication Type:
Springer Tracts in Advanced Robotics, 2018, 121 pp. 583 - 629
Issue Date:
Filename Description Size
Knabe2018_Chapter_TeamVALORSESCHERANovelElectrom.pdfPublished version2.67 MB
Adobe PDF
Full metadata record
© Springer International Publishing AG, part of Springer Nature 2018. The Electric Series Compliant Humanoid for Emergency Response (ESCHER) platform represents the culmination of four years of development at Virginia Tech to produce a full sized force controlled humanoid robot capable of operating in unstructured environments. ESCHER’s locomotion capability was demonstrated at the DARPA Robotics Challenge (DRC) Finals when it successfully navigated the 61 m loose dirt course. Team VALOR, a Track A team, developed ESCHER leveraging and improving upon bipedal humanoid technologies implemented in previous research efforts, specifically for traversing uneven terrain and sustained untethered operation. This paper presents the hardware platform, software, and control systems developed to field ESCHER at the DRC Finals. ESCHER’s unique features include custom linear series elastic actuators (SEAs) in both single and dual actuator configurations and a whole-body control framework supporting compliant locomotion across variable and shifting terrain. A high-level software system designed using the Robot Operating System (ROS) integrated various open-source packages and interfaced with the existing whole-body motion controller. The paper discusses a detailed analysis of challenges encountered during the competition, along with lessons learned critical for transitioning research contributions to a fielded robot. Empirical data collected before, during, and after the DRC Finals validates ESCHER’s performance in fielded environments.
Please use this identifier to cite or link to this item: