A Modified Phase Field Model Based on Order Parameter Gradient and Simulation of Martensitic Transformation in Large Scale System

Publication Type:
Journal Article
Citation:
Jinshu Xuebao/Acta Metallurgica Sinica, 2018, 54 (8), pp. 1204 - 1214
Issue Date:
2018-08-11
Filename Description Size
A Modified Phase Field.pdfPublished Version1.56 MB
Adobe PDF
Full metadata record
© All right reserved. The materials design and fabrication based on predicting microstructure have been drawn increasing attention from scientists and engineers. Martensite microstructure, which is well observed in many materials, has significant influence on physical and mechanical properties of the materials. Some experimental studies have been launched to understand the featured microstructure and its evolution in martensitic transformations (MT). Meantime, numerical approaches are often employed to assist the experimental studies due to the complex and nonlinear nature of MT. The phase field method is one of the most powerful tools in predicting microstructure. Due to the diffuse-interface description, phase field method can be used to simulate arbitrary morphologies without tracking the interface. As a consequence, the interface must contain enough elements to obtain reasonable results by using finite element method. On the other hand, the width of the interface is several orders smaller than its real counterpart. More compu- tational resources are required to resolve the phase field variables at the interface with the system size increased. Therefore, the simulation is restricted in smaller system even with state-of-the-art computer power. For arbitrary model formulations, the interfacial energy depends on the interfacial width and other specific properties of materials. However, the phase field models of martensitic transformation do not have enough degrees of freedom to increase the interfacial width without changing the interfacial energy. In the present study, a scalable phase field model by introducing a global modified function is constructed to study MT, the modified function takes into account the inhomogeneous nature of order parameter gradient across the interfacial region. Through adjusting the free energy density and gradient coefficient, meanwhile keeping the interfacial energy density unchanged, the interfacial width and system size are increased, yet the MT feature can be fully characterized. The simulation results show that the modified phase field model can well solve the drawbacks such as fast growth rate of martensite, artificial orientation relationship between the variants of martensite, and disordered martensite microstructure in large scale system.
Please use this identifier to cite or link to this item: