Sediment load change with erosion processes under simulated rainfall events

Publication Type:
Journal Article
Citation:
Journal of Geographical Sciences, 2019, 29 (6), pp. 1001 - 1020
Issue Date:
2019-06-01
Filename Description Size
Occ-142582_AM.pdfAccepted Manuscript Version1.55 MB
Adobe PDF
Full metadata record
© 2019, Science Press Springer-Verlag. It is of great significance to quantify sediment load changing with erosion processes for improving the precision of soil loss prediction. Indoor rainfall experiments were conducted in 2 rainfall intensities (90 mm·h−1 and 120 mm·h−1), four slope gradients (17.60%, 26.80%, 36.40%, 46.60%) and 2 slope lengths (5 m, 10 m). Erosion processes are divided into five stages. Results show that sediment yield is mainly sourced from rill erosion, contributing from 54.60% to 95.70% and the duration of which is extended by slope gradients. Sediment load and sediment concentration are significantly different along erosion stages, with the highest values in rill development stage (SIV). Surface flow velocities (interrill and rill) demonstrate less significant differences along erosion stages. Rainfall intensity increases sediment load in all stages, with up to 12.0 times higher when changing from 90 to 120 mm·h−1. There is an increasing trend for sediment load and sediment concentration with the rising slope gradient, however, fluctuations existed with the lowest values on 26.80% and 36.40%, respectively, among different treatments. The slope gradient effects are enhanced by rainfall intensity and slope length. Results from this study are important for validating and improving hillslope erosion modelling at each erosion stage.
Please use this identifier to cite or link to this item: