Sample adaptive multiple kernel learning for failure prediction of railway points

Publication Type:
Conference Proceeding
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019, pp. 2848 - 2856
Issue Date:
Full metadata record
© 2019 Association for Computing Machinery. Railway points are among the key components of railway infrastructure. As a part of signal equipment, points control the routes of trains at railway junctions, having a significant impact on the reliability, capacity, and punctuality of rail transport. Meanwhile, they are also one of the most fragile parts in railway systems. Points failures cause a large portion of railway incidents. Traditionally, maintenance of points is based on a fixed time interval or raised after the equipment failures. Instead, it would be of great value if we could forecast points' failures and take action beforehand, min-imising any negative effect. To date, most of the existing prediction methods are either lab-based or relying on specially installed sensors which makes them infeasible for large-scale implementation. Besides, they often use data from only one source. We, therefore, explore a new way that integrates multi-source data which are ready to hand to fulfil this task. We conducted our case study based on Sydney Trains rail network which is an extensive network of passenger and freight railways. Unfortunately, the real-world data are usually incomplete due to various reasons, e.g., faults in the database, operational errors or transmission faults. Besides, railway points differ in their locations, types and some other properties, which means it is hard to use a unified model to predict their failures. Aiming at this challenging task, we firstly constructed a dataset from multiple sources and selected key features with the help of domain experts. In this paper, we formulate our prediction task as a multiple kernel learning problem with missing kernels. We present a robust multiple kernel learning algorithm for predicting points failures. Our model takes into account the missing pattern of data as well as the inherent variance on different sets of railway points. Extensive experiments demonstrate the superiority of our algorithm compared with other state-of-the-art methods.
Please use this identifier to cite or link to this item: