3-D Printed Strain Sensor for Structural Health Monitoring
- Publisher:
- IEEE
- Publication Type:
- Conference Proceeding
- Citation:
- IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and the IEEE International Conference on Robotics, Automation and Mechatronics (RAM), 2020
- Issue Date:
- 2020
Open Access
Copyright Clearance Process
- Recently Added
- In Progress
- Open Access
This item is open access.
Additive manufacturing, or 3D printing, is evolving from a technology that can only aid rapid prototyping, to one that can be used to directly manufacture large-scale, real-world equipment. Gravity Separation Spirals (GSS) are vital to the mining industry for separating mineral-rich slurry into its different density components. In order to overcome inherent drawbacks of the traditional mould base manufacturing methods, including significant tooling costs, limited customisation and worker exposure to hazardous materials, a 3D printer is under development to directly print spirals. By embedding small Internet of Things (IoT) sensors inside the GSS, it is possible to remotely determine the operation conditions, predict faults, and use collected data to optimise production output. This work presents a 3D printed strain sensor, which can be directly printed into the GSS. This approach uses a carbon-based conductive filament to print a strain gauge on top of a Polylactic Acid (PLA) base material. Printed sensors have been tested using an Instron E10000 testing machine with an optical extensometer to improve accuracy. Testing was conducted by both loading and unloading conditions to understand the effect of hysteresis. Test results show a near-linear relationship between strain and measured resistance, and show a 6.05% increase in resistance after the test, which indicates minor hysteresis. Moreover, the impact of viscoelastic behaviour is identified, where the resistance response lags the strain. Results from both conductive and non-conductive material show the impact of the conductive carbon upon the tensile strength, which will help to inform future decisions about sensor placement.
Please use this identifier to cite or link to this item: