Beyond context: Exploring semantic similarity for small object detection in crowded scenes

Publication Type:
Journal Article
Pattern Recognition Letters, 2019
Issue Date:
Full metadata record
© 2019 Small object detection in crowded scene aims to find those tiny targets with very limited resolution from crowded scenes. Due to very little information available on tiny objects, it is often not suitable to detect them merely based on the information presented inside their bounding boxes, resulting low accuracy. In this paper, we propose to exploit the semantic similarity among all predicted objects’ candidates to boost the performance of detectors when handling tiny objects. For this purpose, we construct a pairwise constraint to depict such semantic similarity and propose a new framework based on Discriminative Learning and Graph-Cut techniques. Experiments conducted on three widely used benchmark datasets demonstrate the improvement over the state-of-the-art approaches gained by applying this idea.
Please use this identifier to cite or link to this item: