Operations scheduling of waste-to-energy plants under uncertainty

Publisher:
Elsevier BV
Publication Type:
Journal Article
Citation:
Journal of Cleaner Production, 2020, 253, pp. 119953-119953
Issue Date:
2020-04-20
Full metadata record
© 2020 Elsevier Ltd Waste-to-energy (WTE) technologies provide effective solutions to the compelling challenges of waste management and the energy crisis globally. Many WTE plants utilize the combined heat and power (CHP) operation mode where both electricity and heat can be generated simultaneously. Thus, these WTE CHP plants can supply heat to the local district heating systems and trade power in the electricity markets. As such plants have the responsibilities of treating waste and of fulfilling the allocated district heating demand, necessary operational tasks such as preventive maintenance actions for the production units should be scheduled and performed periodically to ensure their continuous and reliable operations. This paper studies the scheduling of operational tasks in WTE CHP plants that participate in electricity markets and are connected to district heating networks. Firstly, we formulate a two-stage robust optimization model considering the uncertainty of electricity market prices, heat demand, and waste supply. The objective is to derive the robust optimal schedule that maximizes the worst-case operating profit of a WTE CHP plant under uncertainty. Subsequently, we design a constraint generation algorithm for the two-stage robust optimization model. Finally, a case study of scheduling preventive maintenance tasks is conducted for the production units of a WTE CHP plant over a 30-day horizon. The robust schedule thus derived is evaluated by Monte Carlo simulation tests and further compared to the deterministic schedule generated without the consideration of uncertainty. The simulation results show that the robust schedule enables an average profit of 877021.21€ to be attained for the plant over the scheduling horizon. Moreover, it improves the robustness of its deterministic counterpart from 68.4% to 98.8% with an increase of only 0.3% of the operating profit of the plant. In addition, a comprehensive sensitivity analysis is performed to investigate the impacts of different types of uncertainty on the robust schedule for the WTE CHP plant.
Please use this identifier to cite or link to this item: