The performance of active noise control systems on ground with two parallel reflecting surfaces.

Publisher:
ACOUSTICAL SOC AMER AMER INST PHYSICS
Publication Type:
Journal Article
Citation:
The Journal of the Acoustical Society of America, 2020, 147, (5)
Issue Date:
2020-05
Full metadata record
This paper investigates the performance of active noise control (ANC) systems with two reflecting surfaces that are placed vertically on ground in parallel. It employs the modal expansion method and the boundary element method to calculate the noise reduction of the systems with infinitely large and finite size reflecting surfaces, respectively. Both experimental and simulation results show that the noise reduction of the system can be significantly increased after optimizing the surface separation distance and their locations with the sound sources. It is found that the sound radiation of the primary source can be completely reduced in principle if the surface interval is less than half the wavelength and the source line is perpendicular to the surfaces for infinitely large reflecting surfaces. Even with finite size ones, the noise reduction performance improvement is still significant compared with those without any reflecting surfaces. For example, for an ANC system with a source distance of 0.074 m, experiments achieve an improvement of 8.6 dB at 800 Hz where two 0.2 m × 0.2 m parallel reflecting surfaces are placed with a distance of 0.15 m around the system on ground. The mechanisms for the performance improvement are discussed.
Please use this identifier to cite or link to this item: