Ex vivo culture of circulating tumour cells derived from non-small cell lung cancer.

AME Publishing
Publication Type:
Journal Article
Translational Lung Cancer Research, 2020, 9, (5), pp. 1795-1809
Issue Date:
Full metadata record


Tumour tissue-based information is limited. Liquid biopsy can provide valuable real-time information through circulating tumour cells (CTCs). Profiling and expanding CTCs may provide avenues to study transient metastatic disease.


Seventy non-small cell lung cancer (NSCLC) patients were recruited. CTCs were enriched using the spiral microfluidic chip and a RosetteSep™ using bloods from NSCLC patients. CTC cultures were carried out using the Clevers media under hypoxic conditions. CTCs were characterized using immunofluorescence and mutation-specific antibodies for samples with known mutation profiles. Exome sequencing was used to characterized CTC cultures.


CTCs (>2 cells) were detected in 38/70 (54.3%) of patients ranging from 0 to 385 CTCs per 7.5 mL blood. In 4/5 patients where primary tumours harboured an EGFR exon 19 deletion, this EGFR mutation was also captured in CTCs. ALK translocation was confirmed on CTCs from a patient harbouring an ALK-rearrangement in the primary tumour. Short term CTC cultures were successfully generated in 9/70 NSCLC patients. Whole exome sequencing (WES) confirmed the presence of somatic mutations in the CTC cultures with mutational signatures consistent with NSCLC.


We were able to detect CTCs in >50% of NSCLC patients. NSCLC patients with >2 CTCs had a poor prognosis. The short-term CTC culture success rate was 12.9%. Further optimization of this culture methodology may provide a means by which to expand CTCs derived from NSCLC patient's bloods. CTC cultures allow for expansion of cells to a critical mass, allowing for functional characterization of CTCs with the goal of drug sensitivity testing and the creation of CTC cell lines.
Please use this identifier to cite or link to this item: