One-stage deep instrumental variable method for causal inference from observational data

Publisher:
IEEE
Publication Type:
Conference Proceeding
Citation:
Proceedings - IEEE International Conference on Data Mining, ICDM, 2020, 2019-November, pp. 419-428
Issue Date:
2020
Full metadata record
© 2019 IEEE. Causal inference from observational data aims to estimate causal effects when controlled experimentation is not feasible, but it faces challenges when unobserved confounders exist. The instrumental variable method resolves this problem by introducing a variable that is correlated with the treatment and affects the outcome only through the treatment. However, existing instrumental variable methods require two stages to separately estimate the conditional treatment distribution and the outcome generating function, which is not sufficiently effective. This paper presents a one-stage approach to jointly estimate the treatment distribution and the outcome generating function through a cleverly designed deep neural network structure. This study is the first to merge the two stages to leverage the outcome to the treatment distribution estimation. Further, the new deep neural network architecture is designed with two strategies (i.e., shared and separate) of learning a confounder representation account for different observational data. Such network architecture can unveil complex relationships between confounders, treatments, and outcomes. Experimental results show that our proposed method outperforms the state-of-the-art methods. It has a wide range of applications, from medical treatment design to policy making, population regulation and beyond.
Please use this identifier to cite or link to this item: