DA-GAN: Learning structured noise removal in ultrasound volume projection imaging for enhanced spine segmentation

Publication Type:
Conference Proceeding
Proceedings - International Symposium on Biomedical Imaging, 2021, 2021-April, pp. 770-774
Issue Date:
Full metadata record
Ultrasound volume projection imaging (VPI) has shown to be appealing from a clinical perspective, because of its harmlessness, flexibility, and efficiency in scoliosis assessment. However, the limitations in hardware devices degrade the resultant image content with strong structured noise. Owing to the unavailability of reference data and the unpredictable degradation model, VPI image recovery is a challenging problem. In this paper, we propose a novel framework to learn the structured noise removal from unpaired samples. We introduce the attention mechanism into the generative adversarial network to enhance the learning by focusing on the salient corrupted patterns. We also present a dual adversarial learning strategy and integrate the denoiser with a segmentation model to produce the task-oriented noiseless estimation. Experimental results show that the proposed method can improve both the visual quality and the segmentation accuracy on spine images.
Please use this identifier to cite or link to this item: