Generalized correntropy induced metric based total least squares for sparse system identification

Publication Type:
Journal Article
Neurocomputing, 2022, 467, pp. 66-72
Issue Date:
Filename Description Size
Binder1.pdfAccepted version2.62 MB
Adobe PDF
Full metadata record
The total least squares (TLS) method has been successfully applied to system identification in the errors-in-variables (EIV) model, which can efficiently describe systems where input–output pairs are contaminated by noise. In this paper, we propose a new gradient-descent TLS filtering algorithm based on the generalized correntropy induced metric (GCIM), called as GCIM-TLS, for sparse system identification. By introducing GCIM as a penalty term to the TLS problem, we can achieve improved accuracy of sparse system identification. We also characterize the convergence behaviour analytically for GCIM-TLS. To reduce computational complexity, we use the first-order Taylor series expansion and further derive a simplified version of GCIM-TLS. Simulation results verify the effectiveness of our proposed algorithms in sparse system identification.
Please use this identifier to cite or link to this item: