First experimental evaluation of multi-target multileaf collimator tracking during volumetric modulated arc therapy for locally advanced prostate cancer.
- Publisher:
- Elsevier BV
- Publication Type:
- Journal Article
- Citation:
- Radiother Oncol, 2021, 160, pp. 212-220
- Issue Date:
- 2021-07
Closed Access
Filename | Description | Size | |||
---|---|---|---|---|---|
1-s2.0-S016781402106223X-main.pdf | Published version | 2.45 MB |
Copyright Clearance Process
- Recently Added
- In Progress
- Closed Access
This item is closed access and not available.
PURPOSE: Locally advanced and oligometastatic cancer patients require radiotherapy treatment to multiple independently moving targets. There is no existing commercial solution that can simultaneously track and treat multiple targets. This study experimentally implemented and evaluated a real-time multi-target tracking system for locally advanced prostate cancer. METHODS: Real-time multi-target MLC tracking was integrated with 3D x-ray image guidance on a standard linac. Three locally advanced prostate cancer treatment plans were delivered to a static lymph node phantom and dynamic prostate phantom that reproduced three prostate trajectories. Treatments were delivered using multi-target MLC tracking, single-target MLC tracking, and no tracking. Doses were measured using Gafchromic film placed in the dynamic and static phantoms. Dosimetric error was quantified by the 2%/2 mm gamma failure rate. Geometric error was evaluated as the misalignment between target and aperture positions. The multi-target tracking system latency was measured. RESULTS: The mean (range) gamma failure rates for the prostate and lymph nodes, were 18.6% (5.2%, 28.5%) and 7.5% (1.1%, 13.7%) with multi-target tracking, 7.9% (0.7%, 15.4%) and 37.8% (18.0%, 57.9%) with single-target tracking, and 38.1% (0.6%, 75.3%) and 37.2% (29%, 45.3%) without tracking. Multi-target tracking had the lowest geometric error with means and standard deviations within 0.2 ± 1.5 for the prostate and 0.0 ± 0.3 mm for the lymph nodes. The latency was 730 ± 20 ms. CONCLUSION: This study presented the first experimental implementation of multi-target tracking to independently track prostate and lymph node displacement during VMAT. Multi-target tracking reduced dosimetric and geometric errors compared to single-target tracking and no tracking.
Please use this identifier to cite or link to this item: