Natural Convection Heat Transfer in the Partitioned Attic Space

Publisher:
Elsevier
Publication Type:
Chapter
Citation:
Thermofluid Modeling for Energy Efficiency Applications, 2016, pp. 59-72
Issue Date:
2016-01-01
Full metadata record
Heat transfer and air flow through an attic space into or out of buildings is a key issue for attic-shaped houses in different seasons. One of the main objectives for designers and builders is to provide thermal comfort for dwellers. In the present energy-conscious society, it is also a requirement for houses to be energy-efficient, that is, the energy usage for heating or cooling houses must be reduced. Relevant to these objectives, research into heat transfer in attics has been conducted for more than two decades. Numerical simulation is carried out for flow behavior of natural convection in an isosceles triangular enclosure partitioned in the center by a vertical wall with an infinite conductivity. A sudden temperature difference between two zones of the enclosure has been imposed to trigger the natural convection. As a result, heat is transferred between both sides of the cavity through the conducting vertical wall with natural convection boundary layers forming on the middle partition and two inclined surfaces. The Finite Volume-based software Fluent is used for the simulations. The numerical results are obtained for different values of height-base ratio (. 0.2,0.5, and 1.0) with fixed values of Rayleigh number, 108 and Prandtl number, 0.72. It is anticipated from the numerical simulations that the coupled thermal boundary layers development adjacent to the partition undergoes several distinct stages including an initial stage, a transitional stage, and a steady stage. Time-dependent features of the coupled thermal boundary layers, as well as the overall natural convection flow in the partitioned enclosure, have been discussed and compared with the nonpartitioned enclosure. It is found that heat transfer is reduced significantly in the presence of a vertical partition which is placed in the geometrical center line.
Please use this identifier to cite or link to this item: