Willis Coupling-Induced Acoustic Radiation Force and Torque Reversal.

Publisher:
AMER PHYSICAL SOC
Publication Type:
Journal Article
Citation:
Phys Rev Lett, 2022, 129, (17), pp. 174501
Issue Date:
2022-10-21
Filename Description Size
PhysRevLett.129.174501.pdfPublished version782.4 kB
Adobe PDF
Full metadata record
Acoustic meta-atoms serve as the building blocks of metamaterials, with linear properties designed to achieve functions such as beam steering, cloaking, and focusing. They have also been used to shape the characteristics of incident acoustic fields, which led to the manipulation of acoustic radiation force and torque for development of acoustic tweezers with improved spatial resolution. However, acoustic radiation force and torque also depend on the shape of the object, which strongly affects its scattering properties. We show that by designing linear properties of an object using metamaterial concepts, the nonlinear acoustic effects of radiation force and torque can be controlled. Trapped objects are typically small compared with the wavelength, and are described as particles, inducing monopole and dipole scattering. We extend such models to a polarizability tensor including Willis coupling terms, as a measure of asymmetry, capturing the significance of geometrical features. We apply our model to a three-dimensional, subwavelength meta-atom with maximal Willis coupling, demonstrating that the force and the torque can be reversed relative to an equivalent symmetrical particle. By considering shape asymmetry in the acoustic radiation force and torque, Gorkov's fundamental theory of acoustophoresis is thereby extended. Asymmetrical shapes influence the acoustic fields by shifting the stable trapping location, highlighting a potential for tunable, shape-dependent particle sorting.
Please use this identifier to cite or link to this item: