A New Stress-Based Formulation for Modeling Notched Fiber-Reinforced Laminates.

Publisher:
MDPI
Publication Type:
Journal Article
Citation:
Polymers (Basel), 2022, 14, (24), pp. 5552
Issue Date:
2022-12-19
Full metadata record
Laminated plates are often modeled with infinite dimensions in terms of the so-called Whitney-Nuismer (WN) stress criteria, which form a theoretical basis for predicting the residual properties of open-hole structures. Based upon the WN stress criteria, this study derived a new formulation involving finite width; the effects of notch shape and size on the applicability of new formulae and the tensile properties of carbon-fiber-reinforced plastic (CFRP) laminates were investigated via experimental and theoretical analyses. The specimens were prepared by using laminates reinforced by plain woven carbon fiber fabrics and machined with or without an open circular hole or a straight notch. Standard tensile tests were performed and measured using the digital image correlation (DIC) technique, aiming to characterize the full-field surface strain. Continuum damage mechanics (CDMs)-based finite element models were developed to predict the stress concentration factors and failure processes of notched specimens. The characteristic distances in the stress criterion models were calibrated using the experimental results of un-notched and notched specimens, such that the failure of carbon fiber laminates with or without straight notches could be analytically predicted. The experimental results demonstrated well the effectiveness of the present formulations. The new formula provides an effective approach to implementing a finite-width stress criterion for evaluating the tensile properties of notched fiber-reinforced laminates. In addition, the notch size has a great effect on strength prediction while the fiber direction has a great influence on the fracture mode.
Please use this identifier to cite or link to this item: