Population-based optimization in structural engineering: a review

Publisher:
SPRINGER
Publication Type:
Journal Article
Citation:
Artificial Intelligence Review, 2022, 55, (1), pp. 345-452
Issue Date:
2022-01-01
Full metadata record
Structural engineering is focused on the safe and efficient design of infrastructure. Projects can range in size and complexity, many requiring massive amounts of materials and expensive construction and operational costs. Therefore, one of the primary objectives for structural engineers is a cost-effective design. Incorporating optimality criteria into the design procedure introduces additional complexities that result in problems that are nonlinear, nonconvex, and have a discontinuous solution space. Population-based optimization algorithms (known as metaheuristics) have been found to be very efficient approaches to these problems. Many researchers have developed and applied state-of-art metaheuristics to automate and optimize the design of real-world civil engineering problems. While there is a large body of published papers in this area, there are few comprehensive reviews that list, summarize, and categorize metaheuristic optimization in structural engineering. This paper provides an extensive survey of a wide range of metaheuristic techniques to structural engineering optimization problems. Also, information is provided on available structural engineering benchmark problems, the formulation of different objective functions, and the handling of various types of constraints. The performance of different optimization techniques is compared for many benchmark problems.
Please use this identifier to cite or link to this item: