Online UAV Trajectory Planning for Covert Video Surveillance of Mobile Targets

Publisher:
Institute of Electrical and Electronics Engineers (IEEE)
Publication Type:
Journal Article
Citation:
IEEE Transactions on Automation Science and Engineering, 2022, 19, (2), pp. 735-746
Issue Date:
2022-04-01
Full metadata record
This article considers the use of an unmanned aerial vehicle (UAV) for covert video surveillance of a mobile target on the ground and presents a new online UAV trajectory planning technique with a balanced consideration of the energy efficiency, covertness, and aeronautic maneuverability of the UAV. Specifically, a new metric is designed to quantify the covertness of the UAV, based on which a multiobjective UAV trajectory planning problem is formulated to maximize the disguising performance and minimize the trajectory length of the UAV. A forward dynamic programming method is put forth to solve the problem online and plan the trajectory for the foreseeable future. In addition, the kinematic model of the UAV is considered in the planning process so that it can be tracked without any later adjustment. Extensive computer simulations are conducted to demonstrate the effectiveness of the proposed technique. Note to Practitioners - The 'Follow Me' flight mode is available in many unmanned aerial vehicle (UAV) products, and this technique enables a UAV to automatically follow a target. However, this flight mode may make the UAV noticeable to the target and compromise the video surveillance missions of the UAV. Inspired by some security surveillance applications where UAV surveillance is conducted so that a target would not take actions to avoid being monitored, we propose an efficient method to construct the trajectory for the UAV. The proposed method considers the visual covertness and the battery capacity limitation of the UAV, and it can produce a trajectory online for the UAV. The proposed method and scenario can potentially extend the 'Follow Me' flight mode and generate new applications and market for UAVs.
Please use this identifier to cite or link to this item: