Recent Criterion on Stability Enhancement of Perovskite Solar Cells

Publisher:
MDPI
Publication Type:
Journal Article
Citation:
Processes, 2022, 10, (7)
Issue Date:
2022-07-01
Full metadata record
Perovskite solar cells (PSCs) have captured the attention of the global energy research community in recent years by showing an exponential augmentation in their performance and stability. The supremacy of the light-harvesting efficiency and wider band gap of perovskite sensitizers have led to these devices being compared with the most outstanding rival silicon-based solar cells. Nevertheless, there are some issues such as their poor lifetime stability, considerable J–V hysteresis, and the toxicity of the conventional constituent materials which restrict their prevalence in the marketplace. The poor stability of PSCs with regard to humidity, UV radiation, oxygen and heat especially limits their industrial application. This review focuses on the in-depth studies of different direct and indirect parameters of PSC device instability. The mechanism for device degradation for several parameters and the complementary materials showing promising results are systematically analyzed. The main objective of this work is to review the effectual strategies of enhancing the stability of PSCs. Several important factors such as material engineering, novel device structure design, hole-transporting materials (HTMs), electron-transporting materials (ETMs), electrode materials preparation, and encapsulation methods that need to be taken care of in order to improve the stability of PSCs are discussed extensively. Conclusively, this review discusses some opportunities for the commercialization of PSCs with high efficiency and stability.
Please use this identifier to cite or link to this item: