NiCo layered double hydroxides/NiFe layered double hydroxides composite (NiCo-LDH/NiFe-LDH) towards efficient oxygen evolution in different water matrices.

Publisher:
Elsevier
Publication Type:
Journal Article
Citation:
Chemosphere, 2023, 345, pp. 140472
Issue Date:
2023-12
Filename Description Size
NiCo layered double hydroxides.pdfPublished version9.99 MB
Adobe PDF
Full metadata record
Engineering robust non-noble metal electrocatalysts towards efficient impure water (e.g., seawater, wastewater) oxidation is a prospective approach to achieve carbon neutrality via accelerating green hydrogen energy development. Herein, a NiCo layered double hydroxides (LDH)/NiFe LDH composite (NiCo-LDH/NiFe-LDH) was developed for oxygen evolution reaction (OER) via a hydrothermal process-electrodeposition method. The optimal NiCo-LDH/NiFe-LDH-30 composite only needed an overpotential (η) of 240 mV to drive 100 mA/cm2 in alkalized freshwater, with a low Tafel slope of 16.6 mV/dec and good stability for over 90 h. Further analyses suggested that the strong interface interaction between NiCo-LDH and NiFe-LDH accelerated the oxygen gas bubble evolution and boosted interfacial charge transfer, and the formed built-in electric field and higher oxidation state species (metal oxyhydroxides) contributed to the high intrinsic catalytic activity. The NiCo-LDH/NiFe-LDH-30 composite also held excellent OER activities in different impure water environments, including alkaline 0.5 M NaCl solution (η100 = 333 mV), alkaline lake water (η100 = 345 mV), and alkaline wastewater treatment plant (WWTP) effluent (η100 = 320 mV). More importantly, the potential effects of Cl- and CO32- in impure water were revealed during the OER process. This work elaborates on the role of built-in electric field and the strong coupling interaction in composite catalysts, which pave the way for the design of cost-effective catalysts with excellent adaptability in different water environments.
Please use this identifier to cite or link to this item: