A Comprehensive Review of Traditional and Deep-Learning-Based Defogging Algorithms

Publisher:
MDPI
Publication Type:
Journal Article
Citation:
ELECTRONICS, 2024, 13, (17)
Issue Date:
2024-09
Full metadata record
Images captured under adverse weather conditions often suffer from blurred textures and muted colors, which can impair the extraction of reliable information. Image defogging has emerged as a critical solution in computer vision to enhance the visual quality of such foggy images. However, there remains a lack of comprehensive studies that consolidate both traditional algorithm-based and deep learning-based defogging techniques. This paper presents a comprehensive survey of the currently proposed defogging techniques. Specifically, we first provide a fundamental classification of defogging methods: traditional techniques (including image enhancement approaches and physical-model-based defogging) and deep learning algorithms (such as network-based models and training strategy-based models). We then delve into a detailed discussion of each classification, introducing several representative image fog removal methods. Finally, we summarize their underlying principles, advantages, disadvantages, and give the prospects for future development.
Please use this identifier to cite or link to this item: