Tree-Based Solution Frameworks for Predicting Tunnel BoringMachine Performance Using RockMass andMaterial Properties

Publisher:
Tech Science Press
Publication Type:
Journal Article
Citation:
CMES - Computer Modeling in Engineering and Sciences, 2024, 141, (3), pp. 2421-2451
Issue Date:
2024-01-01
Full metadata record
Tunnel Boring Machines (TBMs) are vital for tunnel and underground construction due to their high safety and efficiency. Accurately predicting TBM operational parameters based on the surrounding environment is crucial for planning schedules and managing costs. This study investigates the effectiveness of tree-based machine learning models, including Random Forest, Extremely Randomized Trees, Adaptive Boosting Machine, Gradient Boosting Machine, Extreme Gradient Boosting Machine (XGBoost), Light Gradient Boosting Machine, and CatBoost, in predicting the Penetration Rate (PR) of TBMs by considering rock mass and material characteristics. These techniques are able to provide a good relationship between input(s) and output parameters; hence, obtaining a high level of accuracy. To do that, a comprehensive database comprising various rock mass and material parameters, including Rock Mass Rating, Brazilian Tensile Strength, andWeathering Zone, was utilized for model development. The practical application of these models was assessed with a new dataset representing diverse rock mass and material properties. To evaluate model performance, ranking systems and Taylor diagrams were employed. CatBoost emerged as the most accurate model during training and testing, with R2 scores of 0.927 and 0.861, respectively. However, during validation, XGBoost demonstrated superior performance with an R2 of 0.713. Despite these variations, all tree-based models showed promising accuracy in predicting TBM performance, providing valuable insights for similar projects in the future.
Please use this identifier to cite or link to this item: