Novel influenza A viruses in pigs with zoonotic potential, Chile.
Tapia, R
Brito, B
Saavedra, M
Mena, J
García-Salum, T
Rathnasinghe, R
Barriga, G
Tapia, K
García, V
Bucarey, S
Jang, Y
Wentworth, D
Torremorell, M
Neira, V
Medina, RA
- Publisher:
- American Society for Microbiology
- Publication Type:
- Journal Article
- Citation:
- Microbiol Spectr, 2024, 12, (4), pp. e0218123
- Issue Date:
- 2024-04-02
Open Access
Copyright Clearance Process
- Recently Added
- In Progress
- Open Access
This item is open access.
Full metadata record
Field | Value | Language |
---|---|---|
dc.contributor.author | Tapia, R | |
dc.contributor.author | Brito, B | |
dc.contributor.author | Saavedra, M | |
dc.contributor.author | Mena, J | |
dc.contributor.author | García-Salum, T | |
dc.contributor.author | Rathnasinghe, R | |
dc.contributor.author | Barriga, G | |
dc.contributor.author | Tapia, K | |
dc.contributor.author | García, V | |
dc.contributor.author | Bucarey, S | |
dc.contributor.author | Jang, Y | |
dc.contributor.author | Wentworth, D | |
dc.contributor.author | Torremorell, M | |
dc.contributor.author | Neira, V | |
dc.contributor.author | Medina, RA | |
dc.contributor.editor | Wang, J | |
dc.date.accessioned | 2025-01-28T05:33:32Z | |
dc.date.available | 2025-01-28T05:33:32Z | |
dc.date.issued | 2024-04-02 | |
dc.identifier.citation | Microbiol Spectr, 2024, 12, (4), pp. e0218123 | |
dc.identifier.issn | 2165-0497 | |
dc.identifier.issn | 2165-0497 | |
dc.identifier.uri | http://hdl.handle.net/10453/184341 | |
dc.description.abstract | Novel H1N2 and H3N2 swine influenza A viruses (IAVs) have recently been identified in Chile. The objective of this study was to evaluate their zoonotic potential. We perform phylogenetic analyses to determine the genetic origin and evolution of these viruses, and a serological analysis to determine the level of cross-protective antibodies in the human population. Eight genotypes were identified, all with pandemic H1N1 2009-like internal genes. H1N1 and H1N2 were the subtypes more commonly detected. Swine H1N2 and H3N2 IAVs had hemagglutinin and neuraminidase lineages genetically divergent from IAVs reported worldwide, including human vaccine strains. These genes originated from human seasonal viruses were introduced into the swine population since the mid-1980s. Serological data indicate that the general population is susceptible to the H3N2 virus and that elderly and young children also lack protective antibodies against the H1N2 strains, suggesting that these viruses could be potential zoonotic threats. Continuous IAV surveillance and monitoring of the swine and human populations is strongly recommended.IMPORTANCEIn the global context, where swine serve as crucial intermediate hosts for influenza A viruses (IAVs), this study addresses the pressing concern of the zoonotic potential of novel reassortant strains. Conducted on a large scale in Chile, it presents a comprehensive account of swine influenza A virus diversity, covering 93.8% of the country's industrialized swine farms. The findings reveal eight distinct swine IAV genotypes, all carrying a complete internal gene cassette of pandemic H1N1 2009 origin, emphasizing potential increased replication and transmission fitness. Genetic divergence of H1N2 and H3N2 IAVs from globally reported strains raises alarms, with evidence suggesting introductions from human seasonal viruses since the mid-1980s. A detailed serological analysis underscores the zoonotic threat, indicating susceptibility in the general population to swine H3N2 and a lack of protective antibodies in vulnerable demographics. These data highlight the importance of continuous surveillance, providing crucial insights for global health organizations. | |
dc.format | Print-Electronic | |
dc.language | eng | |
dc.publisher | American Society for Microbiology | |
dc.relation.ispartof | Microbiol Spectr | |
dc.relation.isbasedon | 10.1128/spectrum.02181-23 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject.classification | 3107 Microbiology | |
dc.subject.mesh | Child | |
dc.subject.mesh | Humans | |
dc.subject.mesh | Animals | |
dc.subject.mesh | Swine | |
dc.subject.mesh | Child, Preschool | |
dc.subject.mesh | Aged | |
dc.subject.mesh | Influenza A virus | |
dc.subject.mesh | Influenza A Virus, H3N2 Subtype | |
dc.subject.mesh | Orthomyxoviridae Infections | |
dc.subject.mesh | Influenza A Virus, H1N1 Subtype | |
dc.subject.mesh | Phylogeny | |
dc.subject.mesh | Chile | |
dc.subject.mesh | Reassortant Viruses | |
dc.subject.mesh | Swine Diseases | |
dc.subject.mesh | Influenza, Human | |
dc.subject.mesh | Animals | |
dc.subject.mesh | Swine | |
dc.subject.mesh | Humans | |
dc.subject.mesh | Reassortant Viruses | |
dc.subject.mesh | Influenza A virus | |
dc.subject.mesh | Orthomyxoviridae Infections | |
dc.subject.mesh | Swine Diseases | |
dc.subject.mesh | Phylogeny | |
dc.subject.mesh | Aged | |
dc.subject.mesh | Child | |
dc.subject.mesh | Child, Preschool | |
dc.subject.mesh | Chile | |
dc.subject.mesh | Influenza, Human | |
dc.subject.mesh | Influenza A Virus, H3N2 Subtype | |
dc.subject.mesh | Influenza A Virus, H1N1 Subtype | |
dc.subject.mesh | Child | |
dc.subject.mesh | Humans | |
dc.subject.mesh | Animals | |
dc.subject.mesh | Swine | |
dc.subject.mesh | Child, Preschool | |
dc.subject.mesh | Aged | |
dc.subject.mesh | Influenza A virus | |
dc.subject.mesh | Influenza A Virus, H3N2 Subtype | |
dc.subject.mesh | Orthomyxoviridae Infections | |
dc.subject.mesh | Influenza A Virus, H1N1 Subtype | |
dc.subject.mesh | Phylogeny | |
dc.subject.mesh | Chile | |
dc.subject.mesh | Reassortant Viruses | |
dc.subject.mesh | Swine Diseases | |
dc.subject.mesh | Influenza, Human | |
dc.title | Novel influenza A viruses in pigs with zoonotic potential, Chile. | |
dc.type | Journal Article | |
utslib.citation.volume | 12 | |
utslib.location.activity | United States | |
utslib.copyright.status | open_access | * |
dc.rights.license | This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/ | |
dc.date.updated | 2025-01-28T05:33:29Z | |
pubs.issue | 4 | |
pubs.publication-status | Published | |
pubs.volume | 12 | |
utslib.citation.issue | 4 |
Abstract:
Novel H1N2 and H3N2 swine influenza A viruses (IAVs) have recently been identified in Chile. The objective of this study was to evaluate their zoonotic potential. We perform phylogenetic analyses to determine the genetic origin and evolution of these viruses, and a serological analysis to determine the level of cross-protective antibodies in the human population. Eight genotypes were identified, all with pandemic H1N1 2009-like internal genes. H1N1 and H1N2 were the subtypes more commonly detected. Swine H1N2 and H3N2 IAVs had hemagglutinin and neuraminidase lineages genetically divergent from IAVs reported worldwide, including human vaccine strains. These genes originated from human seasonal viruses were introduced into the swine population since the mid-1980s. Serological data indicate that the general population is susceptible to the H3N2 virus and that elderly and young children also lack protective antibodies against the H1N2 strains, suggesting that these viruses could be potential zoonotic threats. Continuous IAV surveillance and monitoring of the swine and human populations is strongly recommended.IMPORTANCEIn the global context, where swine serve as crucial intermediate hosts for influenza A viruses (IAVs), this study addresses the pressing concern of the zoonotic potential of novel reassortant strains. Conducted on a large scale in Chile, it presents a comprehensive account of swine influenza A virus diversity, covering 93.8% of the country's industrialized swine farms. The findings reveal eight distinct swine IAV genotypes, all carrying a complete internal gene cassette of pandemic H1N1 2009 origin, emphasizing potential increased replication and transmission fitness. Genetic divergence of H1N2 and H3N2 IAVs from globally reported strains raises alarms, with evidence suggesting introductions from human seasonal viruses since the mid-1980s. A detailed serological analysis underscores the zoonotic threat, indicating susceptibility in the general population to swine H3N2 and a lack of protective antibodies in vulnerable demographics. These data highlight the importance of continuous surveillance, providing crucial insights for global health organizations.
Please use this identifier to cite or link to this item:
Download statistics for the last 12 months
Not enough data to produce graph