Functionalisation Effects on Mechanical, Electrical and Thermal Properties of 3D-Printed MWCNT/ABS Nanocomposites.

Publisher:
MDPI
Publication Type:
Journal Article
Citation:
Polymers (Basel), 2025, 17, (17), pp. 2428
Issue Date:
2025-09-08
Full metadata record
While fused filament fabrication (FFF) has gained widespread popularity in additive manufacturing, its prevalent limitation in mechanical properties has prompted researchers to explore innovative solutions, with the creation of nanocomposites emerging as a promising solution. In this study, the effect of multi-walled carbon nanotubes (MWCNTs) on the material properties and morphology of acrylonitrile butadiene styrene (ABS)-based nanocomposites at various MWCNT concentrations of 0.1-1.5% is investigated. A 0.5% MWCNT addition was found to be the optimal content for mechanical, electrical, and thermal properties for FFF-printed specimens printed at longitudinal and transverse build orientations with profound improvement compared to pure ABS. Morphological analysis confirms the significant influence of air voids, low interlayer bonding and the agglomeration of additives on the properties of FFF-printed parts. Then, functionalisation methods are developed in this study for the effective modification of nanoadditives, and their influences on mechanical, electrical and thermal properties of FFF-printed nanocomposite parts are investigated. Both the covalent and non-covalent methods of functionalisation result in a uniform dispersion of nanoadditives with a positive impact on the material properties of those parts, especially for those printed at transverse build orientations.
Please use this identifier to cite or link to this item: