Utilization of Waste Marble Sludge in Self-Compacting Concrete: A Study on Partial Replacement of Cement and Fine Aggregates
- Publisher:
- MDPI
- Publication Type:
- Journal Article
- Citation:
- Sustainability Switzerland, 2025, 17, (19)
- Issue Date:
- 2025-10-01
Open Access
Copyright Clearance Process
- Recently Added
- In Progress
- Open Access
This item is open access.
This study presents a novel approach to the development of self-compacting concrete (SCC) by partially replacing both cement and fine aggregate (sand) with waste marble sludge (WMS), a byproduct of the marble industry. The research aims to evaluate the feasibility of incorporating this industrial waste into SCC to enhance sustainability without compromising performance. To assess the fresh and hardened properties of the proposed mixtures, a comprehensive experimental program was conducted. Tests included slump flow, T50 , and V-funnel for evaluating workability, as well as measurements of specific gravity, compressive strength, flexural strength, Brazilian tensile strength, and water absorption at 28 days of curing. The results demonstrated that the mix containing 5% cement replacement and 20% sand replacement with marble sludge exhibited the highest mechanical performance, achieving a compressive strength of 48.2 MPa, tensile strength of 3.9 MPa, and flexural strength of 4.4 MPa. Furthermore, increasing the percentage of cement replacement led to enhanced flowability, as evidenced by an increase in slump flow diameter and a reduction in V-funnel flow time, indicating improved workability. Overall, the findings suggest that controlled incorporation of WMS can produce SCC with desirable mechanical and rheological properties, offering a promising pathway for sustainable concrete production. In addition to the technical performance, a carbon footprint analysis was conducted to examine the environmental benefits of marble sludge utilization. The mixture with 10% cement and 20% sand replacement exhibited the lowest carbon footprint, while the 7.5% replacement level provided the best balance between strength and sustainability.
Please use this identifier to cite or link to this item:
