Application-Oriented Analysis of Hexaglide Pose Accuracy in Through-Hole Assembly of Electronic Components

Publisher:
MDPI
Publication Type:
Journal Article
Citation:
Actuators, 2025, 14, (9)
Issue Date:
2025-09-01
Full metadata record
Hexaglide parallel manipulators are characterized by high accuracy and dynamic performance, which makes them suitable for industrial high-precision assembly tasks such as placement of electronic THT components on printed circuit boards. In this paper we describe an assembly system that comprises a Hexaglide manipulator with vertical ball screws, moving printed circuit boards relative to stationary THT components. We evaluate the effects of the manufacturing tolerances of machine parts, such as bar length tolerance, ball screw axis position uncertainty, and ball screw axis orientation uncertainty, on Hexaglide end-effector pose accuracy using a geometric simulation study based on stochastic tolerance sampling. In the investigated configuration and under standard industrial tolerances, bar length inaccuracy and axis position uncertainty lead to significant position and rotation deviations for the Hexaglide end-effector in the horizontal plane that need to be compensated for by control algorithms to enable THT assembly using the Hexaglide prototype. The geometric simulation method applied in this paper can be used by designers of Hexaglide machines to study and evaluate different machine configurations.
Please use this identifier to cite or link to this item: