DCSCY: DRL-Based Cross-Shard Smart Contract Yanking in a Blockchain Sharding Framework

Publisher:
MDPI
Publication Type:
Journal Article
Citation:
Electronics Switzerland, 2025, 14, (16)
Issue Date:
2025-08-01
Full metadata record
Blockchain sharding has emerged as a promising solution to address scalability and performance challenges in distributed ledger systems. In the sharded blockchain, yanking can reduce the communication overhead of smart contracts between shards. However, the existing smart contract yanking methods are inefficient, increasing the latency and reducing the throughput. In this paper, we propose a novel DRL-Based Cross-Shard Smart Contract Yanking (DCSCY) framework which intelligently balances three critical factors: the number of smart contracts processed, node waiting time, and yanking costs. The proposed framework dynamically optimizes the relocation trajectory of smart contracts across shards. This reduces the communication overhead and enables adaptive, function-level migrations to enhance the execution efficiency. The experimental results demonstrate that the proposed approach reduces the cross-shard transaction latency and enhances smart contract utilization. Compared to random-based and order-based methods, the DCSCY approach achieves a performance improvement of more than 95%.
Please use this identifier to cite or link to this item: