Fractal market time

Publication Type:
Journal Article
Journal of Empirical Finance, 2012, 19 (5), pp. 686 - 701
Issue Date:
Filename Description Size
Thumbnail2011007471OK.pdf2.37 MB
Adobe PDF
Full metadata record
Ané and Geman (2000) observed that market returns appear to follow a conditional Gaussian distribution where the conditioning is a stochastic clock based on cumulative transaction count. The existence of long range dependence in the squared and absolute value of market returns is a `stylized fact and researchers have interpreted this to imply that the stochastic clock is self-similar, multi-fractal (Mandelbrot, Fisher and Calvet, 1997) or mono-fractal (Heyde, 1999). We model the market stochastic clock as the stochastic integrated intensity of a doubly stochastic Poisson (Cox) point process of the cumulative transaction count of stocks traded on the New York Stock Exchange (NYSE). A comparative empirical analysis of a self-normalized version of the stochastic integrated intensity is consistent with a mono-fractal market clock with a Hurst exponent of 0.75.
Please use this identifier to cite or link to this item: