Morphological and phase stability of zinc blende, amorphous and mixed core-shell ZnS nanoparticles.

Publication Type:
Journal Article
Nanoscale, 2010, 2 (10), pp. 2294 - 2301
Issue Date:
Filename Description Size
Thumbnail2012000620OK.pdf512.97 kB
Adobe PDF
Full metadata record
Zinc sulfide (ZnS) nanoparticles are of interest for their luminescent and catalytic properties which are being considered for the next generation of optical, electronic and photovoltaic devices. However, ZnS nanoparticles undergo reversible and irreversible phase transformations under ambient conditions, so a detailed understanding of the nanomorphology is critical in ensuring these desirable properties can be controlled and maintained. Anticipating the structure and transformations in ZnS nanoparticles experimentally is difficult, since selectivity among competing phases, shapes and sizes is intrinsically linked. Presented here are the results of first principle computer simulations and advanced theoretical modelling used to investigate the relationship between size and shape in determining the crystallinity of ZnS nanoparticles. We find that the equilibrium morphology is characterised by {220} facets, irrespective of the size of the particle, but that the presence of different high energy facets introduced kinetically may significantly influence the zinc blende to amorphous ZnS transformation size, as well as the agglomeration behaviour. In addition to this, we model the relationship between transformation size, morphology and the ratio of crystalline core to amorphous shell and show that at small sizes, a core-shell crystalline/amorphous structure is thermodynamically favourable.
Please use this identifier to cite or link to this item: