The role and regulation of hypoxia-inducible factor-1alpha expression in brain development and neonatal hypoxic-ischemic brain injury

Publication Type:
Journal Article
Brain Research Reviews, 2009, 62 (1), pp. 99 - 108
Issue Date:
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2013006095OK.pdfPublished Version308.38 kB
Adobe PDF
During neonatal hypoxic-ischemic brain injury, activation of transcription of a series of genes is induced to stimulate erythropoiesis, anti-apoptosis, apoptosis, necrosis and angiogenesis. A key factor mediating these gene transcriptions is hypoxia-inducible factor-1alpha (HIF-1alpha). During hypoxia, HIF-1alpha protein is stabilized and heterodimerizes with HIF-1beta to form HIF-1, subsequently regulating the expression of target genes. HIF-1alpha participates in early brain development and proliferation of neuronal precursor cells. Under pathological conditions, HIF-1alpha is known to play an important role in neonatal hypoxic-ischemic brain injury: on the one hand, HIF-1alpha has neuroprotective effects whereas it can also have neurotoxic effects. HIF-1alpha regulates the transcription of erythropoietin (EPO), which induces several pathways associated with neuroprotection. HIF-1alpha also promotes the expression of vascular endothelial cell growth factor (VEGF), which is related to neovascularization in hypoxic-ischemic brain areas. In addition, HIF-1alpha has an anti-apoptotic effect by increasing the expression of anti-apoptotic factors such as EPO during mild hypoxia. The neurotoxic effects of HIF-1alpha are represented by its participation in the apoptotic process by increasing the stability of the tumor suppressor protein p53 during severe hypoxia. Moreover, HIF-1alpha plays a role in cell necrosis, by interacting with calcium and calpain. HIF-1alpha can also exacerbate brain edema via increasing the permeability of the blood-brain barrier (BBB). Given these properties, HIF-1alpha has both neuroprotective and neurotoxic effects after hypoxia-ischemia. These events are cell type specific and related to the severity of hypoxia. Unravelling of the complex functions of HIF-1alpha may be important when designing neuroprotective therapies for hypoxic-ischemic brain injury.
Please use this identifier to cite or link to this item: