A high-frequency link multilevel cascaded medium-voltage converter for direct grid integration of renewable energy systems
- Publisher:
- Institute of Electrical and Electronics Engineers Inc.
- Publication Type:
- Journal Article
- Citation:
- IEEE Transactions on Power Electronics, 2014, 29 (8), pp. 4167 - 4182
- Issue Date:
- 2014
Open Access
Copyright Clearance Process
- Recently Added
- In Progress
- Open Access
This item is open access.
Recent advances in solid-state semiconductors have led to the development of medium-voltage power converters (e.g., 6-36 kV) which could obviate the need for the step-up transformers of renewable power generation systems. The modular multilevel cascaded converters have been deemed as strong contenders for the development of medium-voltage converters, but the converters require multiple isolated and balanced dc supplies. In this paper, a high-frequency link multilevel cascaded medium-voltage converter is proposed. The common high-frequency link generates multiple isolated and balanced dc supplies for the converter, which inherently minimizes the voltage imbalance and common mode issues. An 11-kV system is designed and analyzed taking into account the specified system performance, control complexity, cost, and market availability of the power semiconductors. To verify the feasibility of the proposed system, a scaled down 1.73-kVA laboratory prototype test platform with a modular five-level cascaded converter is developed and explored in this paper, which converts a 210 V dc (rectified generator voltage) into three-phase 1 kV rms 50 Hz ac. The experimental results are analyzed and discussed. It is expected that the proposed new technology will have great potential for future renewable generation systems and smart grid applications. © 2013 IEEE.
Please use this identifier to cite or link to this item: