Actionable knowledge discovery : methodologies and frameworks

Publication Type:
Issue Date:
Full metadata record
Most data mining algorithms and tools stop at the mining and delivery of patterns satisfying expected technical interestingness. There are often many patterns mined but business people either are not interested in them or do not know what follow-up actions to take to support their business decisions. This issue has seriously affected the widespread employment of advanced data mining techniques in greatly promoting enterprise operational quality and productivity. In this thesis, a formal and systematic view of actionable knowledge discovery (AKD for short) has been proposed from the system and microeconomy perspectives. AKD is a closed-loop optimization problem-solving process from problem definition, framework/model design to actionable pattern discovery, and to deliver operationalizable business rules that can be seamlessly associated or integrated with business processes and systems. To support AKD, corresponding methodologies, frameworks and tools have been proposed with case studies in the real world to address critical challenges facing the traditional KDD and. to cater for crucially important factors surrounding real-life AKD. First, a comprehensive survey and retrospection on the existing data mining methodologies, issues and challenges in actionable knowledge discovery are reviewed. Second, a practical data mining methodology: domain driven data mining is addressed. Third, several frameworks have been proposed to support domain drivenactionable knowledge discovery. Fourth, case studies of domain-driven actionable pattern mining in stock markets and social security data are presented to demonstrate the usefulness and potential of the proposed domain driven actionable knowledge discovery. In summary, this thesis explores in detail how domain driven actionable knowledge discovery can be effectively and efficiently applied to the discovery and delivery of knowledge satisfying both technical and business concerns as well as to support smart decision-making in the real world. The issues and techniques addressed in this thesis have potential to promote the research on critical KDD challenges, and contribute to the paradigm shift from data-centered and technical significance-oriented hidden pattern mining to domain-driven and balanced actionable knowledge discovery. The proposed methodologies and frameworks are flexible, general and effective to be expanded and applied to mining real-life complex data for actionable knowledge.
Please use this identifier to cite or link to this item: