Development and evaluation of a new multi-metal binding biosorbent

Publication Type:
Journal Article
Bioresource Technology, 2014, 160 pp. 98 - 106
Issue Date:
Full metadata record
A novel multi-metal binding biosorbent (MMBB) was developed by combining a group of three from the selective natural lignocellulosic agro-industrial wastes for effectively eliminating lead, cadmium, copper and zinc from aqueous solutions. Four MMBBs with different combinations (MMBB1: tea waste, corncob, sugarcane bagasse; MMBB2: tea waste, corncob and sawdust; MMBB3: tea waste, corncob and apple peel; MMBB4: tea waste, corncob and grape stalk) were evaluated. FTIR analysis for characterizing the MMBB2 explored that the MMBB2 contains more functional groups available for multi-metals binding. Comparing among the MMBBs as well as the single group biosorbents, MMBB2 was the best biosorbent with the maximum biosorption capacities of 41.48, 39.48, 94.00 and 27.23mg/g for Cd(II), Cu(II), Pb(II) and Zn(II), respectively. After 5 times of desorption with CaCl2, CH3COOH and NaCl as eluent, the MMBB2 still remained excellent biosorptive capacity, so as it could be well regenerated for reuse and possible recovery of metals. © 2013 Elsevier Ltd.
Please use this identifier to cite or link to this item: