Modeling and stochastic optimization of complete coverage under uncertainties in multi-robot base placements

Publication Type:
Conference Proceeding
IEEE International Conference on Intelligent Robots and Systems, 2016, 2016-November pp. 2978 - 2984
Issue Date:
Full metadata record
© 2016 IEEE. Uncertainties in base placements of mobile, autonomous industrial robots can cause incomplete coverage in tasks such as grit-blasting and spray painting. Sensing and localization errors can cause such uncertainties in robot base placements. This paper addresses the problem of collaborative complete coverage under uncertainties through appropriate base placements of multiple mobile and autonomous industrial robots while aiming to optimize the performance of the robot team. A mathematical model for complete coverage under uncertainties is proposed and then solved using a stochastic multi-objective optimization algorithm. The approach aims to concurrently find an optimal number and sequence of base placements for each robot such that the robot team's objectives are optimized whilst uncertainties are accounted for. Several case studies based on a real-world application using a realworld object and a complex simulated object are provided to demonstrate the effectiveness of the approach for different conditions and scenarios, e.g. various levels of uncertainties, different numbers of robots, and robots with different capabilities.
Please use this identifier to cite or link to this item: