Coagulation performance and floc characteristics of polytitanium tetrachloride (PTC) compared with titanium tetrachloride (TiCl<inf>4</inf>) and ferric chloride (FeCl<inf>3</inf>) in algal turbid water

Publication Type:
Journal Article
Citation:
Separation and Purification Technology, 2017, 175 pp. 99 - 106
Issue Date:
2017-03-24
Full metadata record
© 2016 Elsevier B.V. Seasonal green algae blooms in freshwaters have raised attention on the need to develop novel effective treatment processes for the removal of algae in water. In the present study, the performance of newly developed polytitanium tetrachloride (PTC) coagulant for the removal of freshwater microalga Chlorella vulgaris has been investigated and compared with titanium tetrachloride (TiCl4) coagulant and the conventional ferric chloride (FeCl3) coagulant. The main benefit of using titanium-based coagulants is that the sludge produced after flocculation may be recycled into a valuable product: titanium dioxide photocatalyst. Both titanium-based coagulants achieved good flocculation over a broader pH range and coagulant dose compared to conventional FeCl3 coagulant. All three coagulants achieved comparable performance in terms of turbidity removal (i.e. turbidity removal efficiency >97%); although TiCl4 performed slightly better at the lower tested dose (i.e. <9 mg/L). Zeta potential measurements indicated that charge neutralisation may not be the sole mechanism involved in the coagulation of algae for all three coagulants. Analysis of the dynamic floc size variation during floc breakage showed no regrowth after floc breakage for the three coagulants. The flocs formed by both Ti-based coagulants were larger than those formed by FeCl3 and also grew at a faster rate. This study indicates that Ti-based coagulants are effective and promising coagulants for algae removal in water.
Please use this identifier to cite or link to this item: