Visual Analytics of Complex Genomics Data to Guide Effective Treatment Decisions

Publisher:
MDPI
Publication Type:
Journal Article
Citation:
Journal of Imaging, 2016, 2 (4), pp. 1 - 17
Issue Date:
2016-12
Full metadata record
Files in This Item:
Filename Description Size
jimaging-02-00029.pdfPublished Version6.67 MB
Adobe PDF
In cancer biology, genomics represents a big data problem that needs accurate visual data processing and analytics. The human genome is very complex with thousands of genes that contain the information about the individual patients and the biological mechanisms of their disease. Therefore, when building a framework for personalised treatment, the complexity of the genome must be captured in meaningful and actionable ways. This paper presents a novel visual analytics framework that enables effective analysis of large and complex genomics data. By providing interactive visualisations from the overview of the entire patient cohort to the detail view of individual genes, our work potentially guides effective treatment decisions for childhood cancer patients. The framework consists of multiple components enabling the complete analytics supporting personalised medicines, including similarity space construction, automated analysis, visualisation, gene-to-gene comparison and user-centric interaction and exploration based on feature selection. In addition to the traditional way to visualise data, we utilise the Unity3D platform for developing a smooth and interactive visual presentation of the information. This aims to provide better rendering, image quality, ergonomics and user experience to non-specialists or young users who are familiar with 3D gaming environments and interfaces. We illustrate the effectiveness of our approach through case studies with datasets from childhood cancers, B-cell Acute Lymphoblastic Leukaemia (ALL) and Rhabdomyosarcoma (RMS) patients, on how to guide the effective treatment decision in the cohort.
Please use this identifier to cite or link to this item: