Parallel distinguishability of quantum operations

Publisher:
IEEE
Publication Type:
Conference Proceeding
Citation:
Proceedings of the IEEE International Symposium on Information Theory (ISIT), 2016, pp. 2259 - 2263
Issue Date:
2016-08-10
Full metadata record
Files in This Item:
Filename Description Size
parallel distinguishability of quantum operations.pdfAccepted Manuscript431.74 kB
Adobe PDF
© 2016 IEEE.We find that the perfect distinguishability of two quantum operations by a parallel scheme depends only on an operator subspace generated from their Choi-Kraus operators. We further show that any operator subspace can be obtained from two quantum operations in such a way. This connection enables us to study the parallel distinguishability of operator subspaces directly without explicitly referring to the underlining quantum operations. We obtain a necessary and sufficient condition for the parallel distinguishability of an operator subspace that is either one-dimensional or Hermitian. In both cases the condition is equivalent to the non-existence of positive definite operator in the subspace, and an optimal discrimination protocol is obtained. Finally, we provide more examples to show that the non-existence of positive definite operator is sufficient for many other cases, but in general it is only a necessary condition.
Please use this identifier to cite or link to this item: