Assessing the potential for trace organic contaminants commonly found in Australian rivers to induce vitellogenin in the native rainbowfish (Melanotaenia fluviatilis) and the introduced mosquitofish (Gambusia holbrooki)

Publication Type:
Journal Article
Citation:
Aquatic Toxicology, 2017, 185 pp. 105 - 120
Issue Date:
2017-01-01
Full metadata record
© 2017 Elsevier B.V. In Australia, trace organic contaminants (TrOCs) and endocrine active compounds (EACs) have been detected in rivers impacted by sewage effluent, urban stormwater, agricultural and industrial inputs. It is unclear whether these chemicals are at concentrations that can elicit endocrine disruption in Australian fish species. In this study, native rainbowfish (Melanotaenia fluviatilis) and introduced invasive (but prevalent) mosquitofish (Gambusia holbrooki) were exposed to the individual compounds atrazine, estrone, bisphenol A, propylparaben and pyrimethanil, and mixtures of compounds including hormones and personal care products, industrial compounds, and pesticides at environmentally relevant concentrations. Vitellogenin (Vtg) protein and liver Vtg mRNA induction were used to assess the estrogenic potential of these compounds. Vtg expression was significantly affected in both species exposed to estrone at concentrations that leave little margin for safety (p < 0.001). Propylparaben caused a small but statistically significant 3× increase in Vtg protein levels (p = 0.035) in rainbowfish but at a concentration 40× higher than that measured in the environment, therefore propylparaben poses a low risk of inducing endocrine disruption in fish. Mixtures of pesticides and a mixture of hormones, pharmaceuticals, industrial compounds and pesticides induced a small but statistically significant increase in plasma Vtg in rainbowfish, but did not affect mosquitofish Vtg protein or mRNA expression. These results suggest that estrogenic activity represents a low risk to fish in most Australian rivers monitored to-date except for some species of fish at the most polluted sites.
Please use this identifier to cite or link to this item: