IκBα glutathionylation and reduced histone H3 phosphorylation inhibit eotaxin and RANTES

Publication Type:
Journal Article
European Respiratory Journal, 2011, 38 (6), pp. 1444 - 1452
Issue Date:
Filename Description Size
1444.full.pdfPublished Version583.29 kB
Adobe PDF
Full metadata record
Airway smooth muscle cells (ASMCs) secrete eotaxin and RANTES (regulated on activation, normal T-cell expressed and secreted) in response to tumour necrosis factor (TNF)-α, which is inhibited by the nuclear factor (NF)-κB inhibitor dimethylfumarate (DMF). NF-κB/IκB (inhibitor of NF-κB) glutathionylation and changes in chromatin remodelling can inhibit NF-κB activity. In this study, we determined whether NF-κB/IκB glutathionylation and reduced histone H3 phosphorylation might underlie the inhibitory effect of DMF on NF-κB activity, and eotaxin and RANTES secretion. Primary human ASMCs were treated with DMF, diamide and/or glutathione (GSH) ethylester (OEt) prior to TNF-α stimulation and were subsequently analysed by ELISA, electrophoretic mobility shift assay, immunofluorescence, co-immunoprecipitation or immunoblotting. DMF reduced intracellular GSH and induced IκBα glutathionylation (IκBα-SSG), which inhibited IκBα degradation, NF-κB p65 nuclear entry and NF-κB/DNA binding. In addition, DMF inhibited the phosphorylation of histone H3, which was possibly mediated by the inhibitory effect of DMF on mitogen- and stress-activated protein kinase (MSK)-1. However, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase MAPK and MAPK phosphatase-1, upstream of MSK-1, were not inhibited by DMF. Importantly, DMF-mediated effects on NF-κB, histone H3, eotaxin and RANTES were reversed by addition of GSH-OEt. Our data suggest that DMF inhibits NF-κB-dependent eotaxin and RANTES secretion by reduction of GSH with subsequent induction of IκBα-SSG and inhibition of histone H3 phosphorylation. Our findings offer new potential drug targets to reduce airway inflammation in asthma. Copyright©ERS 2011.
Please use this identifier to cite or link to this item: